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Abstract

Vision-centric perception systems struggle with unpre-
dictable and coupled weather degradations in the wild.
Current solutions are often limited, as they either de-
pend on specific degradation priors or suffer from signif-
icant domain gaps. To enable robust and autonomous
operation in real-world conditions, we propose JarvisIR,
a VLM-powered agent that leverages the VLM as a con-
troller to manage multiple expert restoration models. To
further enhance system robustness, reduce hallucinations,
and improve generalizability in real-world adverse weather,
JarvisIR employs a novel two-stage framework consisting
of supervised fine-tuning and human feedback alignment.
Specifically, to address the lack of paired data in real-world
scenarios, the human feedback alignment enables the VLM
to be fine-tuned effectively on large-scale real-world data in
an unsupervised manner. To support the training and eval-
uation of JarvisIR, we introduce CleanBench, a compre-
hensive dataset consisting of high-quality and large-scale
instruction-responses pairs, including 150K synthetic en-
tries and 80K real entries. Extensive experiments demon-
strate that JarvisIR exhibits superior decision-making and
restoration capabilities. Compared with existing methods,
it achieves a 50% improvement in the average of all percep-
tion metrics on CleanBench-Real. Project page: https:
//cvpr2025-jarvisir.github.io/.

1. Introduction
Vision-centric perception systems often struggle in ad-
verse weather, where images captured in real-world sce-
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narios exhibit multiple and coupled degradations. Current
adverse weather image restoration methods are primarily
categorized into task-specific methods and all-in-one ap-
proaches. Both categories struggle with real-world cou-
pled degradations, as shown in Figure 1. Task-specific
methods [24, 31, 32, 45, 89] often require prior knowl-
edge of specific degradation types, while real-world degra-
dations are often unknown and coupled. All-in-one meth-
ods [13, 18, 30, 37, 49] trained on synthetic datasets in a su-
pervised manner, suffer from a significant domain gap when
applied to real-world data. One promising strategy to tackle
multiple degradations in the wild is to integrate specialized
models that excel in their domains. However, this strategy
is highly sensitive to task order, and even minor changes
in execution sequence can lead to significant performance
degradation. Therefore, autonomously and efficiently coor-
dinating expert models in real-world scenarios is essential
for perceptual restoration.

Recently, large language models (LLMs) have exhib-
ited remarkable proficiency in reasoning, decision-making
and interaction with environments [26, 29, 53, 85, 98].
These advancements raise an important question: Could
vision-language models (VLMs) act as controllers, manag-
ing publicly available specialized restoration models, au-
tonomously planning tasks, and selecting models to facili-
tate the development of comprehensive restoration systems?
The answer is affirmative, however, constructing such sys-
tems is non-trivial and typically requires extensive paired
data. In real-world scenarios, while there exists exten-
sive real degraded data, the lack of corresponding labels
prevents the implementation of supervised fine-tuning ap-
proaches. To tackle this issue and harness large-scale un-
labeled data, we design a fine-tuning framework based on
human feedback, allowing the VLM to be trained in an un-
supervised manner. With this approach, we could create a
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Figure 1. Limitations of single-task methods, all-in-one methods, and inaccurate task order. (a) Single-task specific and all-in-one
methods fail to address coupled degradation in real-world scenarios. (b) Collaboration among multi-expert models effectively mitigates
complex degradation, but is sensitive to the order of tasks. Unlike these approaches, JarvisIR can dynamically schedule different expert
models in response to the rapidly changing scenarios and coupled degradation in the wild.

system that performs robustly and reliably in the wild.

In this work, we introduce JarvisIR, a VLM-powered
agent integrating VLM (i.e., Llava-Llama3 [46]) with ex-
pert restoration models sourced from GitHub and Hug-
ging Face. The development of this system involved two
key components: 1) CleanBench, an instruction-following
dataset constructed using the self-instruct strategy [73],
which includes 150K synthetic and 80K real instruction-
response pairs (CleanBench-Real), designed to support both
training and evaluation. 2) A supervised fine-tuning (SFT)
and human feedback alignment framework for training a
VLM as an agent to be reliable and autonomous. Specif-
ically, to enable the VLM to follow user instructions and
perceive image degradation, we train it using the synthetic
portion of CleanBench via SFT [50]. To enhance system
robustness, reduce hallucinations, and improve generaliz-
ability in real-world adverse weather, we fine-tune JarvisIR
on CleanBench-Real with human feedback. To ensure sta-
bility during training and improve overall performance, we
propose the MRRHF algorithm, an extension of the rank-
ing responses with human feedback (RRHF) approach [93].
Specifically, to expand the exploration space while main-
taining a performance lower bound for JarvisIR, we intro-
duce a hybrid sample generation strategy and regularization
term. Furthermore, to comprehensively feedback the qual-
ity of system responses during training, we incorporate mul-
tiple VLM-based Image Quality Assessment (IQA) models
as a unified reward model.

Our contributions can be summarized as follows:

• We introduce JarvisIR, a VLM-powered agent that au-
tonomously manages and coordinates multiple expert
restoration models to address coupled weather degrada-
tions in real-world environments.

• We present CleanBench, the first high-quality instruction-
following dataset specifically curated for developing in-
telligent restoration systems, containing 150K synthetic
and 80K real instruction-response pairs.

• We propose a novel two-stage framework combining su-
pervised fine-tuning and human feedback alignment to
enhance system robustness, reduce hallucinations and im-
prove generalizability in the wild.

• Our experiments demonstrate that JarvisIR outperforms
strong baselines in terms of decision-making and percep-
tion restoration.

2. Related Work

Tool-Augmented LLMs. Recent studies [6, 53, 56, 60–
62, 97] highlight the growing potential of large language
models (LLMs) for proficient tool usage and decision-
making in complex settings. For example, Gorilla [53] fa-
cilitates LLMs’ response to Tool calls through dataset con-
struction and fine-tuning. ToolLLM [56] extends this con-
cept to enable interaction with a large number of tools.
ToolAlpaca [65] demonstrates the feasibility of general-
ized tool-use capabilities in smaller LLMs. Toolformer [60]
constructs tool-use augmented data to train LLMs to select
tools. In the realm of visual tools, various approaches have
been proposed to enhance the capabilities of large language
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models in handling visual tasks [78, 88], augmented with
Hugging Face models [61], Azure models [88], visual foun-
dation models [78].

Alignment of LLMs. Reinforcement Learning from Hu-
man Feedback (RLHF) [1, 2, 28, 66] has emerged as a
groundbreaking technique for aligning LLMs. The core
idea is learning a reward function to reflect human prefer-
ences with human annotations and optimize LLMs by RL
methods like proximal policy optimization (PPO). During
PPO-based optimization, updating LLMs requires the like-
lihood of an entire generation. However, for LLM agents,
human feedback is usually obtained only after the tool re-
sponse is completed and the function is successfully in-
voked. Moreover, unlike typical LLM training, our two-
stage fine-tuning process integrates both visual and linguis-
tic modalities. Rank Responses to Align Human Feedback
(RRHF) [93] has shown promise by using reward models
to rank multiple responses, aligning LLMs effectively. This
technique allows easy extension to fine-grained tool agents,
thereby maximizing the utility of existing reward models.

Image Restoration. Single-task image restoration has
achieved significant progress in addressing specific degra-
dation types, such as dehazing [31, 42, 81], low-light en-
hancement [27, 33, 44], desnowing [8, 14, 17], deraining
[12, 16, 82], denoising [7, 94] super-resolution [10, 64, 70,
72], image fusion [22, 23, 43, 74]. However, these task-
specific approaches often lack generalizability and adapt-
ability to complex, coupled degradations. To overcome this
limitation, adverse weather restoration research aims to de-
velop a unified framework capable of addressing multiple
degradation types simultaneously [15, 25, 41, 51]. Another
prevailing research line is dedicated to building more intelli-
gent restoration systems. Clarity ChatGPT [77], integrated
with advanced visual models, allows users to perform so-
phisticated image manipulation and enhancement through
natural language interactions. RestoreAgent [9] and Agen-
ticIR [101] are contemporaneous independent works that
utilize MLLM as a task planner to coordinate multiple
restoration tools. Specifically, RestoreAgent [9] involves
fine-tuning a vision-language model (VLM) using synthetic
datasets to directly produce an execution plan. Agenti-
cIR [101] leverages two off-the-shelf LLMs and VLMs
to achieve the scheduling of restoration tools on the syn-
thetic experiment platform. Essentially, both studies focus
on building intelligent restoration systems tailored for syn-
thetic degradation conditions. Conversely, our study aims
to develop a robust system for real-world applications, in-
corporating human feedback to enhance robustness, reduce
hallucinations and improve generalizability. Furthermore,
our system is built in an unsupervised manner using large-
scale, unlabeled real-world data.

Figure 2. The dataset construction workflow consists of three main
steps: 1) Synthesis of degraded images. 2) Generation of Assess-
ment reasoning and the optimal task sequence. 3) Generation of
instruction-response pairs for the system.

3. Methodology
In this section, we first describe CleanBench, a comprehen-
sive benchmark consisting of extensive instruction-response
pairs used for the training and evaluation of JarvisIR
(Sec. 3.1). We then introduce JarvisIR, a VLM agent to
call expert restoration models in response to intricate mul-
tiple degraded environments in the wild (Sec. 3.2). Finally,
we describe the two-stage training framework for JarvisIR,
comprising supervised fine-tuning and human feedback
alignment.

3.1. CleanBench
High-quality and large-scale datasets are crucial for un-
leashing the full potential of VLMs. A multimodal instruc-
tion sample can be formally represented as a triplet: {user
instruction, degraded image, response}, where “user in-
struction” specifies the task and describes the restoration
tools, “degraded image” serves as the visual input to be
processed, and the “response” provides the ground truth an-
swer. In Figure 2, we outline the construction of our dataset,
focusing on the generation of degraded images and the col-
lection of task-specific instructions and responses.
Image Collection. We first collect raw daytime im-
ages from various sources, including autonomous driving
datasets [4, 59, 92, 102] and natural scenes [5, 34, 39, 42,
47, 87, 99]. Then, Q-instruct [80] serves as a quality filter to
extract high-quality samples. To simulate realistic adverse
weather scenarios, including rainy, nighttime, snowy, and
foggy, we customized the degradation library developed us-
ing physical models and image transformation techniques to
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Figure 3. Examples of CleanBench-Real dataset.

synthesize degraded images. More detail in supplementary
material.
Response Generation. The response from JarvisIR con-
sists of two components: “chain-of-thought” (COT) ra-
tionales and the optimal task sequence with model se-
lection. (a) For COT rationales, we distill DepictQA-
Wild’s [91] knowledge, which excels in low-level quality
reasoning assessment. Specifically, given a degraded im-
age pair, we prompt DepictQA-Wild [91] to assess the qual-
ity of the degraded image in terms of clarity, colorfulness,
and sharpness, generating detailed degradation and reason-
ing insights. (b) To determine the optimal task sequence
with restoration model selection, we employ an exhaustive
search strategy [9] to explore various task permutations and
model combinations, scoring each sequence to identify the
optimal restoration path.
Task-model Assignment. User instructions include de-
scriptions of available tasks and models, sourced from
GitHub or Hugging Face, to formulate task-model assign-
ment as a single-choice problem. Presenting tasks and mod-
els as options within a context allows JarvisIR to more ef-
fectively identify the appropriate model for each sub-task.
Instruction Generation. Motivated by the self-instruct
strategy [73], for each initial user instruction and response,
GPT-4V is prompted to generate 20 candidate pairs. We
then manually review these candidates to eliminate ambi-
guity, repetition, and inaccuracies, ultimately selecting 5
instruction-response pairs per degraded image (see supple-
mentary material for details). Ultimately, CleanBench in-
cludes a total of 150K instruction-response pairs, which are
used in the initial instruction-tuning phase.
CleanBench-Real. To align and evaluate JarvisIR’s perfor-
mance in real-world scenarios, we introduce CleanBench-
Real, comprising 80K unlabeled real degraded images from
internet and diverse sources [4, 33, 34, 47, 57, 71, 87, 92].
CleanBench-Real is categorized into four adverse weather
scenarios: rainy, night, snowy, and foggy. The degrada-
tion in each scenario is complex and interwined. For ex-
ample, as presented in Figure 3, an image captured in rain
may experience multiple degradations concurrently, includ-
ing rain, raindrops, defocus blur, and noise (more in sup-

Figure 4. The workflow of JarvisIR. To address real-world cou-
pled weather degradation, we develop JarvisIR, a VLM-powered
intelligent system that dynamically schedules expert models for
restoration. Initially, JarvisIR assesses the degradation of the in-
put images and parses user instructions to formulate a task plan,
selecting the appropriate expert models for each subtask. The se-
lected experts perform their designated tasks and return the results
to JarvisIR, which integrates the outcomes and provides the final
answer to the user. The design of the figure is inspired by [61].

plementary material). For the division of the training and
evaluation sets, we selected 500 images from each of the
four CleanBench-Real scenarios to form the evaluation set
(2K), while the remaining images are utilized for alignment
tuning. Instruction-response pairs are generated in the same
way as outlined in CleanBench.

3.2. JarvisIR
JarvisIR is a VLM-powered agent that coordinates multiple
expert restoration models to address complex degradation.
As illustrated in Figure 4, the workflow of JarvisIR consists
of four steps: Task Planning, Model Selection, Task Exe-
cution, and Response Generation. To enhance the agent’s
decision-making and perception restoration capabilities in
real-world scenarios, as depicted in Figure 5, we initially
perform supervised fine-tuning (SFT) on CleanBench to ob-
tain an initial version, termed JarvisIR-SFT. Subsequently,
the JarvisIR-SFT is further fine-tuned utilizing the MR-
RHF algorithm on CleanBench-Real, yielding the JarvisIR-
MRRHF model.

3.2.1. JarvisIR-SFT
We employ the standard SFT to get the JarvisIR-SFT model.
Formally, the multimodal instruction sample can be de-
noted in a triplet form (I,M,R), where I, M, R rep-
resent the user instruction, the degraded image, and the
ground truth response, respectively. The VLM predicts an
answer A given the instruction and the degraded image:
A = f(I,M; θ). The training objective is the original
auto-regressive objective used to train LLMs [48, 90]:

Lsft = −
N∑
i=1

logPπ (Ri | {Ii,Mi} ,R<i; θ) , (1)

where N is the length of the ground-truth response.
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3.2.2. JarvisIR-MRRHF
Intuitively, SFT allows JarvisIR-SFT to achieve favorable
performance on synthetic data. Nevertheless, as previously
noted, due to the distribution shift, transferring from syn-
thetic training data to real test data, JarvisIR-SFT exhibits
increased hallucination, i.e., degraded perception restora-
tion performance and decision-making capability. To im-
prove its generalizability, we further fine-tune JarvisIR on
CleanBench-Real with refined ranking responses with hu-
man feedback algorithm (MRRHF).
Reward modeling. The reward model evaluates tool-
calling outcomes and converts them into structured reward
signals to guide the agent’s optimization process. There-
fore, selecting an appropriate reward model is crucial. For-
tunately, in the image quality assessment (IQA) field, VLM-
based IQA models have been developed [80], demonstrat-
ing strong performance in evaluating aesthetic quality and
image distortion. These IQA models are inherently suitable
for serving as reward models. To construct a comprehen-
sive reward model S, as well as an evaluation system, we
integrated multiple IQA models. Specifically, we employ
a z-score strategy [9] to standardize the scores assessed by
each IQA model separately and then sum the standardized
results:

S =

k∑
i=1

si − µi

σi
, (2)

where si represents the score assessed by i-th IQA model.
µi and σi epresent the mean and standard deviation of si,
respectively. k indicates the total number of IQA models.
Alignment with MRRHF. We propose an extension to
the existing RRHF method that can be used for align-
ing JarvisIR in a cost-effective manner: 1) A hybrid sam-
ple generation strategy that combines offline and online
approaches to expand the optimization exploration space
while ensuring a performance lower bound. 2) Entropy reg-
ularization terms are integrated to foster diversity among
agent responses, thereby facilitating exploration during
training. Specifically, for a pair of user instruction Ii
and degraded image Mi, we first adopt offline diverse
beam search [68] to get m1 different responses Rm1 =
{r1, r2, . . . , rm1

} from SFT model π. Similarly, we can
obtain Rm2

= {r1, r2, . . . , rm2
} from policy model ρ (ini-

tialized from SFT model π) during training. The combined
candidate m responses are denoted as Rm = Rm1

∪ Rm2
.

Subsequently, we execute the task sequences specified in
candidate responses, calling multiple restoration models to
generate restored images. These predictions are then as-
sessed by the reward model S, yielding scores for each ri
with S(ri) = si. To align with scores {si}m, we use policy
model ρ to give scores pi for each ri by:

pi =

∑
t logPρ (ri,t | {Ii,Mi} , ri,<t; θ)

∥ri∥
, (3)

Figure 5. Two-stage training framework of JarvisIR. In the first
stage, JarvisIR undergoes supervised fine-tuning on synthetic data
from CleanBench to enable it to follow user instructions and rec-
ognize image degradation. In the second stage, we further fine-
tune JarvisIR on CleanBench-Real using the MRRHF algorithm
to improve system robustness, reduce hallucinations, and enhance
generalizability under real-world adverse weather conditions.

where pi is conditional log probability (length-normalized)
of ri under model ρ. The core idea is letting the policy
model ρ give larger probabilities for better responses and
give smaller probabilities for worse responses. Inspired by
PRO [63], we refine the original ranking loss:

Lrank =
∑
si<sj

(sj − si)max (0, pi − pj) , (4)

and a cross-entropy loss like SFT process is added to learn
the response with the highest reward si, i′ = argmaxi si:

Lft = −
∑
t

logPρ (ri′,t | {Ii,Mi} , ri′,<t; θ) . (5)

Furthermore, we define the entropy regularization term as:

Ler = −
∑
a

ρ(a | y) log ρ(a | y), (6)

where y represents the current state of the agent. The over-
all loss is utilized to optimize the JarvisIR-SFT to derive
JarvisIR-MRRHF:

L = λ1Lrank + λ2Lft + λ3Ler, (7)

where λ1, λ2 and λ3 are constants controlling the relative
importance of the different losses, which are empirically set
to 0.5, 0.5 and 0.1 in all experiments, respectively.
Discussion of RLHF and RRHF: The training of vanilla
RLHF [50] necessitated a policy model, a value model, a
reward model, and a reference model, which could be de-
manding on memory resources. Rank Responses to Align
Human Feedback (RRHF) [93] can effectively alleviate
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Figure 6. Visual comparisons of various methods on CleanBench-Real. Our approach delivers significant quality improvements, eliminat-
ing complex real-world degradation and preserving the most natural details.

the issues of resource-intensive and tedious hyperparame-
ter tuning in RLHF. However, directly fine-tuning JarvisIR
using RRHF yields limited improvement to its generaliza-
tion in real-world scenarios. Although vanilla RRHF em-
ploys an off-policy learning strategy that could save time by
avoiding the need to generate new responses during train-
ing, it has the drawback of relying on a static offline pref-
erence dataset for training the policy model. Consequently,
the policy might over-optimize for reward on in-distribution
data as the model cannot further query the preference oracle
during the training process [75]. The RRHF incorporating
online sampling like PPO might mitigate this issue, but it
demands more GPU resources to store the reference model,
thereby significantly decreasing the training speed [93].

4. Experiments

4.1. Experimental Settings
Training Setup. Llava-Llama3-8b [46] serves as the base
model for JarvisIR, which undergoes full parameter fine-
tuning using the Adam optimizer. During the SFT phase,
we fine-tune JarvisIR for 3 epochs with a batch size of 128
and a learning rate of 1e-5. In the MRRHF tuning phase, we
set the diverse beam search size to 3, the diverse beam group
to 5, the diversity penalty to 2.0, and the sampling temper-
ature to 0.8. Alignment tuning is performed over 3 epochs
with a batch size of 1 and a learning rate of 1e-5. To speed
up training, we select three IQA models—Q-instruct [80],
MUSIQ [35] and MANIQA [86]—to construct the unifed
reward model (Eq. 2). All experiments are conducted on 8
NVIDIA A100 80G GPUs.
Dataset Setings & Metrics. The CleanBench is fully uti-
lized for supervised fine-tuning of Llava-Llama3-8b [46] to
obtain JarvisIR-SFT. The training set of CleanBench-Real
is used for alignment tuning, yielding JarvisIR-MRRHF.
Additionally, JarvisIR’s evaluation is conducted on the val-
idation set of CleanBench-Real, focusing on 1) decision-
making ability and 2) perception restoration capability in

Table 1. Comparison of JarvisIR with other strategies on the
CleanBench-Real validation set. The “Score” represents the sum
of the four normalized metrics. The “Ranking” indicates the given
decision’s percentage ranking among all possible decisions. We
highlight the best and second-best results.

Strategy Score Ranking(%)

(I) Random Order and Model 1.12 43.2%
(II) Random Order + Predict Model 2.66 34.7%
(III) Random Model + Predict Order 3.08 23.4%
(IV) Pre-defined Order and Model 3.94 22.5%

(V) Human Expert 4.85 18.6%
⋆JarvisIR-SFT 5.17 14.3%

⋆JarvisIR-MRRHF 6.21 4.8%

real-world scenarios. Due to the lack of paired clean-
degraded data in the real scenarios. Four image quality
assessment metrics are used for evaluation: MUSIQ [35],
MANIQA [86], CLIP-IQA+ [69], LIQE [95].
Tool Settings. We present the task-specific restoration
tools employed in our implementation, including denois-
ing (SCUnet [94]), super-resolution & deblur & com-
pression artifact removal (StableSR-turbo [70] and Real-
ESRGAN [72]), deraining (IDT [82], UDR-S2Former [8]
and Img2img-turbo [52]), dehazing (RIDCP [81] and
KANet [21]), low-light enhancement (Img2img-turbo [52],
HVI-CIDNet [83] and LightenDiff [27]) and desnowing
(Img2img-turbo [52] and Snowformer [11]). More de-
tails are in the supplementary material. Notably, we select
lightweight and efficient models instead of the latest state-
of-the-art models to simplify the validation process of our
proposed paradigm. Incorporating more advanced models
could further enhance performance.

4.2. Decision Making Capability
Compared Baselines. We conducted a comparative anal-
ysis of JarvisIR against several alternative approaches: (I)
Random selection of both the task order and the models, as-
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Table 2. Comparison of JarvisIR with All-in-One methods for multi-degraded perception restoration on CleanBench-Real. We highlight
the best , second-best and third-best results. Notably, all scenes represent multiple degraded weather conditions, such as haze, low
light and blur.

Night Scenes Rain Scenes
Method MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑ MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑
AirNet [40] 44.26 0.1889 0.4429 1.313 62.61 0.3871 0.5867 3.136
AutoDIR [30] 47.30 0.1885 0.4341 1.403 63.93 0.4002 0.6082 3.312
DA-CLIP [49] 45.86 0.2010 0.4544 1.427 63.28 0.3993 0.5959 3.194
PromptIR [55] 45.45 0.2010 0.4473 1.408 62.85 0.3926 0.5941 3.161
MiOIR [37] 46.93 0.2013 0.4403 1.408 63.07 0.3779 0.5841 3.055
InstructIR [18] 44.03 0.1533 0.3689 1.257 62.93 0.3657 0.5609 3.055
T3-DiffWeather [13] 46.79 0.1964 0.4547 1.413 62.67 0.3689 0.5823 3.011
⋆JarvisIR-SFT 60.77 0.5048 0.5239 3.224 65.03 0.5339 0.6290 4.005
⋆JarvisIR-MRRHF 67.25 0.5876 0.6336 3.613 70.38 0.7004 0.7127 4.435

Fog Scenes Snow Scenes
Method MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑ MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑

AirNet [40] 64.23 0.3829 0.6173 2.686 67.32 0.4320 0.6379 3.794
AutoDIR [30] 64.84 0.3966 0.6443 2.928 67.62 0.4305 0.6453 3.824
DA-CLIP [49] 64.78 0.3880 0.6540 2.793 67.71 0.4294 0.6426 3.817
PromptIR [55] 64.54 0.3810 0.6417 2.557 67.34 0.4292 0.6435 3.776
MiOIR [37] 64.93 0.3501 0.5969 2.415 67.28 0.4187 0.6404 3.702
InstructIR [18] 64.82 0.3904 0.6449 2.919 67.98 0.4038 0.6052 3.715
T3-DiffWeather [13] 64.58 0.3715 0.6163 2.497 67.72 0.4129 0.6268 3.713
⋆JarvisIR-SFT 70.45 0.4855 0.6560 3.977 70.24 0.7133 0.7127 4.086
⋆JarvisIR-MRRHF 74.22 0.7502 0.7805 4.714 73.87 0.8014 0.7918 4.881

suming that task types are accurately determined. (II) Ran-
dom task order, but models predicted by JarvisIR. (III) Ran-
dom model selection, but task orders predicted by JarvisIR.
(IV) Using a human expert’s predefined order and models
for different scenes, assuming the approximate scene degra-
dation can be determined. (V) A human expert manually
generates a solution case by case for each image, determin-
ing both the task sequence and the appropriate models.
Results. As indicated in Table 1, strategies that involve
human expert participation—specifically settings (IV) and
(V)—demonstrate strong performance compared to ran-
dom strategies, ranking within the top 22.5% and 18.6%
of all possible strategies, respectively. These results indi-
cate the effectiveness of human experts’ experience in com-
plex decision-making processes. Interestingly, however, our
JarvisIR model achieves the highest performance, surpass-
ing even the expert-driven customization strategies. Fur-
thermore, JarvisIR-MRRHF (4.8%) outperforms JarvisIR-
SFT (14.3%) in both score and ranking, highlighting that
the MRRHF stage in our training framework effectively
mitigates hallucination errors in system responses, thereby
enabling the generation of more optimal decisions.

4.3. Perception Restoration Ability

Compared All-in-One Methods. We compare JarvisIR
with existing advanced all-in-one methods: AirNet [40],

AutoDIR [30], DA-CLIP [49], PromptIR [55], MiOIR [37],
InstructIR [18], T3-DiffWeather [13]. For a fair compar-
ison, we repeatedly run these compared methods multiple
times to fully leverage their capabilities. Additionally, we
supply InstructIR and AutoDIR with explicit prompts de-
tailing degradation scenarios to optimize their performance.
Results. As shown in Table 2 and Figure 6, JarvisIR out-
performs existing All-in-One approaches across all met-
rics. In Night Scenes, JarvisIR-MRRHF achieves a MUSIQ
score of 67.25, which is 42.2% higher than AutoDIR’s
score of 47.30. In MANIQA, JarvisIR-MRRHF scores
0.5876, much better than DA-CLIP (0.2010) and MiOIR
(0.2013). These results show that JarvisIR autonomously
selects optimal task sequences and models, outperform-
ing methods with predefined or random sequences. Ad-
ditionally, JarvisIR-MRRHF also exceeds the SFT version
in all scenes, with notable gains in Rain (70.38 vs. 65.03
MUSIQ) and Fog (74.22 vs. 70.45 MUSIQ). These results
demonstrate that JarvisIR fine-tuned with MRRHF can im-
prove generalizability, fewer hallucination errors, and better
decision-making ability.

5. Ablation Study

Sample generation strategy. To assess the effectiveness of
the hybrid sample generation strategy, we compared it with
two variations of the original setting: 1) offline sample gen-
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Table 3. Ablation studies on different sample generation strategies
and entropy regularization. The “Reward” represents the average
reward scores obtained during MRRHF training, spanning from -1
to 1. A negative score indicates a penalty, while a positive score
represents a reward. The “Diversity” reflects the average number
of unique responses produced during the training process.

Strategy Reward Diversity

offline sample generation 0.43 3.63
online sample generation -0.87 1.27

hybrid sample generation (ours) 0.67 6.55
w/o. entropy regularization 0.50 4.56

w. entropy regularization (ours) 0.67 6.55

eration strategy. 2) online sample generation strategy. The
results in Table 3 and Figure 7 yield the following observa-
tions: 1) The offline sample generation strategy yields lim-
ited performance gains, with a reward score of 0.43 and a
diversity score of 3.63. This limitation arises because the
sample distribution is restricted to the finite dataset gen-
erated by the SFT model using diverse beam search [68].
Consequently, the policy model may over-optimize for in-
distribution data, thereby limiting its ability to generalize
and achieve higher reward scores. 2) The online sampling
strategy initially yields higher reward scores and diversity.
However, as training progresses, the model encounters a
collapse, leading to a significantly low reward score (-0.87)
and decreased diversity (1.27). This instability may result
from an excessively large optimization space without ade-
quate constraints during training. When the model reaches
a local minimum, it struggles to escape, as the candidate
responses generated using diverse beam search [68] are of
poor quality, causing the model to produce repetitive and
invalid responses. Our hybrid sampling approach combines
both online and offline samples, resulting in superior per-
formance with a reward score of 0.67 and the highest diver-
sity score of 6.55. This balanced strategy leverages the ad-
vantages of both online and offline sampling, ensuring sta-
ble training by providing sufficient exploration space while
avoiding the pitfalls associated with purely online sampling.
As a result, the hybrid strategy maintains high reward scores
and diversity throughout training, outperforming both on-
line and offline strategies.

Entropy regularization. As discussed in Sec. 3.2.2, en-
tropy regularization significantly affects the diversity of sys-
tem responses during training. The results in Table 3 and
Figure 7 show that without this regularization, the reward
decreases from 0.67 to 0.50, while the diversity drops from
6.55 to 4.56. This highlights the role of entropy regular-
ization in fostering greater exploration and producing more
diverse, high-quality responses.

Figure 7. Ablation studies on different sample generation strate-
gies and entropy regularization. (a) Response diversity during
MRRHF training iterations. (b) Reward values across MRRHF
training iterations.

6. Conclusions
This paper introduces JarvisIR, a VLM-powered intelli-
gent system that leverages Llava-Llama3 to connect dis-
tinct restoration expert models. JarvisIR can autonomously
schedule different expert models in response to the rapidly
changing scenarios and coupled degradation in autonomous
driving and natural environments. To enhance system ro-
bustness, minimize hallucinations, and improve generaliz-
ability, we propose a novel two-stage framework compris-
ing supervised fine-tuning and human feedback alignment.
Specifically, we design the human feedback alignment to
effectively tune the VLM in an unsupervised manner, lever-
aging large-scale unlabeled real-world data. To support
the training and evaluation of JarvisIR, we present Clean-
Bench, a high-quality, large-scale dataset containing 150K
synthetic and 80K real instruction-response pairs. Exper-
iments show that JarvisIR outperforms existing methods,
achieving a 50% improvement in the average of all percep-
tion metrics on CleanBench-Real.
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8. More implementation details
8.1. Restoration tool settings
Table 4 lists the task-specific restoration tools used in our
implementation. Notably, some models lack weights cor-
responding to certain tasks but are inherently adaptable;
we collect appropriate data to retrain them. For exam-
ple, Img2img-turbo [52] is an image-to-image translation
method based on SD-turbo that provides night-to-day and
rainy-to-day weights but not snow-to-day weights. To en-
able Img2img-turbo to adapt to snow scenes, we retrain it
using the CycleGAN paradigm on the snow subset of the
ACDC dataset [59]. Additionally, it is important to note
that we are not utilizing the latest state-of-the-art tools, sug-
gesting considerable potential for enhancing our models.

8.2. Details of Model Setups
Model Architecture. In this study, JarvisIR primarily
adopts the architecture from Llava-Llama3-8B [46]. Specif-
ically, the input images and instruction texts are first to-
kenized, then fused, and finally processed by the Large
Language Model (LLM) for response generation. (a) To-
kenization of input images and instruction texts: We use
a frozen CLIP pre-trained ViT-L/14 [58] as the image en-
coder to convert input images into visual tokens. The in-
struction texts are tokenized into textual tokens using the
SentencePiece tokenizer [38]. To bridge the different em-

bedding spaces of visual and textual tokens, we implement
a trainable image projector to map visual tokens into the
textual space, following [67, 100]. (b) Token Fusion: We
integrate the visual tokens into predefined positions within
the textual tokens to achieve token fusion. (c) Response
Generation Using LLM: The fused tokens are fed into the
LLM to generate the final response. In our experiments, we
primarily use Llama3-8B [67]. Even with their advanced
features, pre-trained LLMs lack the ability to furnish accu-
rate responses, thorough reasoning regarding degradation,
and precise restoration plans without dataset-specific fine-
tuning. Therefore, we employ a full parameter fine-tuning
technique that efficiently unleashes the potential of LLM to
the maximum extent.
Model setup. Since the CLIP pre-trained ViT-L/14 [58] en-
codes each 14 × 14 image patch into a visual token, the
input image dimensions must be integer multiples of 14.
Therefore, we zero-pad the input images to meet this re-
quirement. We encode the image patches into visual tokens
using the CLIP pre-trained ViT-L/14 [58], where each token
is a 1024-dimensional vector. These visual tokens are sub-
sequently projected by the image projection layer into the
LLM’s hidden dimension of 4096.
Training setup. Both the SFT and MRRHF tuning phases
utilize the Adam optimizer with learning rate 1e-5 with
cosine decay. The warmup ratio is set to 0.03, the max-
imum sequence length is 2048, and the weight decay is
4. JarvisIR-SFT undergoes training for three epochs with
a batch size of 128, while JarvisIR-MRRHF is trained for
three epochs using a batch size of 2. During the MRRHF
tuning phase, the diverse beam search settings include a size
of 3, 5 beam groups, a diversity penalty of 2.0, and a sam-
pling temperature of 0.8. Training is conducted on 8 GPUs
(NVIDIA A100 80G).

9. CleanBench dataset details

9.1. Dataset statistics

CleanBench. In constructing the CleanBench process,
we collected large-scale raw daytime images from vari-
ous sources, including autonomous driving datasets [4, 4,
59, 92] and natural datasets [5, 34, 39, 42, 87, 99] .The
CleanBench dataset contains a total of 150K degraded-clean
image pairs. For the construction of CleanBench-Real,
we gathered 80K real degraded images consisting of night
scenes, fog scenes, snow scenes and rain scenes. These data
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Table 4. Task-specific restoration tools with descriptions.

Task Tools Model Description

Super-resolution StableSR-turbo [70]
Utilizes pre-trained diffusion models with a time-aware encoder
for high-quality super-resolution, deblurring, and artifact re-
moval.

Real-ESRGAN [72] Fast GAN for super-resolution, deblurring, and artifact removal,
handling complex real-world degradations efficiently.

Denoising SCUnet [94]
Hybrid UNet-based model combining convolution and trans-
former blocks, designed for robust denoising under diverse real-
world noise conditions.

Compression artifact removal
StableSR-turbo [70]

Utilizes pre-trained diffusion models with a time-aware encoder
for high-quality super-resolution, deblurring, and artifact re-
moval.

Real-ESRGAN [72] Fast GAN for super-resolution, deblurring, and artifact removal,
handling complex real-world degradations efficiently.

Deblurring
StableSR-turbo [70]

Utilizes pre-trained diffusion models with a time-aware encoder
for high-quality super-resolution, deblurring, and artifact re-
moval.

Real-ESRGAN [72] Fast GAN for super-resolution, deblurring, and artifact removal,
handling complex real-world degradations efficiently..

Deraining

IDT [82] Transformer-based model for de-raining and raindrop removal.
UDR-S2Former [8] An uncertainty-aware transformer model for rain streak removal.

Img2img-turbo-rain [52] Efficient model based on SD-turbo, designed for fast and effec-
tive rain removal in real-world images.

Raindrop removal IDT [82] Transformer-based model for de-raining and raindrop removal.

Dehazing
RIDCP [81] Efficient dehazing model utilizing high-quality codebook priors

to handle complex real-world haze.

KANet [21] Efficient dehazing network using a localization-and-removal
pipeline to handle complex real-world hazy.

Desnowing
Img2img-turbo-snow [52] Efficient model for removing snow artifacts while preserving

natural scene details.

Snowformer [11] Transormer-based model for removing snowflakes while pre-
serving natural scene details.

Low-light enhancement

Img2img-turbo-night [52] Fast and efficient model based on SD-turbo, designed for low-
light enhancement in real-world scenarios.

HVI-CIDNet [83]
Lightweight transformer for low-light and exposure correction,
enhancing both image quality and downstream vision tasks effi-
ciently.

LightenDiff [27]
Diffusion-based framework for low-light enhancement, lever-
aging Retinex theory and latent-space decomposition for high-
quality unsupervised restoration.

come from diverse sources, including the aforementioned
autonomous driving datasets. Additionally, to enhance the
generalizability of JarvisIR in natural contexts, we incor-
porated natural adverse weather scenes from internet and
public datasets [5, 34, 39, 42, 47, 57, 87, 99].

9.2. Details of degradation library

As described in Sec 3.1 of the manuscript, we simulate re-
alistic adverse weather scenarios—rainy, nighttime, snowy,
and foggy conditions—by customizing a degradation li-
brary developed with physical models and image transfor-
mation techniques to synthesize degraded images. In this
section, we detail our degradation implementations, cov-
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Figure 8. Adverse weather scene simulator. To simulate realistic adverse weather scenarios, including rainy, nighttime, snowy, and foggy,
we customized the degradation library developed using physical models and image transformation techniques to synthesize degraded
images.

ering the principles, formulas, and severity setups for the
Night Scene Simulator, Fog Scene Simulator, Rain Scene
Simulator, and Snow Scene Simulator. Examples for each
implementation are provided in Figure 11.

Night Scene Simulator. Inspired by the work of [19], we
employ a low-light degradation transform to synthesize re-
alistic low-light images, denoted as Tnight, as illustrated in
Figure 8. Specifically, we first convert the daytime image
Iday into RAW data using the sRGB→ RAW process [3].
Next, we linearly attenuate the RAW image and introduce
Shot and Read (S&R) noise, which is commonly observed
in camera imaging systems [3]. Finally, we apply the Image
Signal Processing (ISP) pipeline to convert the low-light
sensor data back into sRGB format. Additionally, we in-
corporate flare degradation using flare templates from the
Flare7K++ [20] dataset. The complete low-light degrada-

tion transform Tnight is given by:

Tnight (Iday) = TISP (TsRGB→RAW (Iday) + Inoise)+Iflare,
(8)

which generates a degraded image Iday that closely resem-
bles a dark nighttime scene. Furthermore, we use an online
dynamic degradation process. It applies randomized param-
eter combinations, as defined in Equation 8, to simulate di-
verse nighttime driving conditions.
Fog Scene Simulator. Inspired by RIDCP [81], we de-
sign a foggy image degradation transform, denoted as
Tfog , to synthesize realistic hazy images, as shown in Fig-
ure 8. Specifically, we simulate fog by introducing trans-
mission maps t(x) using depth estimation algorithms (e.g.,
Depth anything V2 [84]), combined with exponential at-
tenuation eβd(x), where β controls haze density within the
range [0.3, 1.5]. Additionally, poor lighting conditions are
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modeled by applying a brightness adjustment factor γ ∈
[1.5, 3.0], Gaussian noise N , and atmospheric light varia-
tion A+∆A, where ∆A is sampled from [−0.025, 0.025].
To further enhance realism, JPEG compression artifacts are
introduced by applying JPEG (·) to the degraded image.
The complete foggy image synthesis process is defined as:

Tfog (Iday ) = JPEG
(
P
(
Iγday +N , eβd(x), A+∆A

))
,

(9)
where P represents the hazy image formation process, Iday
is the clean image, and d(x) is the estimated depth map.
The variable x refers to the spatial coordinates of the im-
age. This dynamic degradation process is designed to oper-
ate online with randomized parameters, simulating diverse
real-world foggy conditions.
Rain Scene Simulator. Inspired by PGDGN [54], we in-
troduce a rain degradation transform, denoted as Train, to
generate realistic rainy images (Figure 8). This transform
synthesizes rainy images by combining a disentangled clean
image with a physics-based rain rendering model. The
degradation process is formulated as:

Train (Iday) = WMod(G(Iday), ŵ, z), (10)

where Iday is the clean image, G(Iday) represents the disen-
tangled base image, and WMod is the rain rendering model.
WMod incorporates parameters ŵ = {ŵd, ŵnd}, with ŵd

controlling differentiable aspects such as raindrop size and
streak density, and ŵnd addressing nondifferentiable prop-
erties. The term z introduces stochastic noise for variability
in rain effects. This process applies WMod to add realistic
raindrop occlusions, rain streaks, and scene wetness to the
disentangled image. G(Iday), generating a visually plausi-
ble rainy image Train (Iday) with controlled and diverse ef-
fects.
Snow Scene Simulator. Building on the img2img-turbo
model [52], we introduce a snow transformation, denoted
as Tsnow, to generate realistic snowy images from daytime
inputs. This process uses the SD-Turbo model with textual
conditioning. It synthesizes snowy scenes by combining the
input image with a latent diffusion-based generator and a
textual prompt. The snow transformation is formulated as:

Tsnow (Iday , Csnow ) = Gsnow (Iday , Csnow ) , (11)

where Iday is the daytime input image, Csnow is the textual
condition (e.g., “driving in the heavy snow”), and Gsnow rep-
resents the generator. By employing LoRA adapters and
skip connections, the generator enables precise control over
scene characteristics while maintaining the structural in-
tegrity of the input image. This process applies Gsnow to
infuse the daytime image Iday with snowy features, guided
by the contextual information in Csnow. The resulting syn-
thetic image aligns closely with the visual expectations of a
snowy environment while maintaining consistency with the
original scene’s structure.

10. More ablation

To thoroughly investigate the proposed JarvisIR, we con-
ducted an extensive array of ablation studies on the
CleanBench-Real dataset. Four non-reference metrics are
used for assessment: MUSIQ [35], MANIQA [86], CLIP-
IQA+ [69], LIQE [95]. The specific elements of these stud-
ies are further expounded in the sections that follow.

10.1. MRRHF vs. vanilla RRHF
We evaluate the effectiveness of our proposed MRRHF by
comparing it with vanilla RRHF [93]. The reward and
diversity metrics over training iterations are illustrated in
Table 5. Fine-tuning JarvisIR with MRRHF significantly
improves the average values of both reward and diversity
by 0.19 and 3.43, respectively, compared to using RRHF.
The degradation in diversity and reward when using vanilla
RRHF results from its offline sample generation strategy.
As discussed in Sec. 5 in the manuscript, this strategy con-
fines its generated samples to the finite sample space cre-
ated by the SFT model using diverse beam search [68].
In contrast, our MRRHF employs a hybrid sample gener-
ation strategy and entropy regularization, providing suffi-
cient sample exploration space to achieve globally optimal
results.

10.2. Sample generation strategy and entropy reg-
ularization

In our manuscript, we examine the effects of the sample
generation strategy and entropy regularization on the MR-
RHF tuning process, focusing on reward scores and re-
sponse diversity. This section provides further evidence
of the effectiveness of our hybrid sample generation strat-
egy and entropy regularization. Specifically, as shown in
Table 5, we assess their impact on performance using the
CleanBench-Real validation set. The results demonstrate
that our hybrid sampling approach and entropy regulariza-
tion not only enhance training stability and facilitate high-
quality exploration of the optimization space but also sig-
nificantly improve testing performance.

10.3. Effectiveness of differentiated contrast
weights

In Equation 4 of our manuscript, we refine the original rank-
ing loss [93] by introducing differentiated contrast weights,
expressed as Lrank =

∑
si<sj

(sj − si)max (0, pi − pj).
The term (sj − si) represents the differentiated contrast
weights. We compare this with the original ranking loss
L̂rank =

∑
si<sj

max (0, pi − pj). Table 5 presents the re-
ward and diversity metrics over training iterations. When
the ranking loss is applied without differentiated contrast
weights L̂rank the average values of both reward and di-
versity decrease by 0.14 and 3.93, respectively, compared
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Table 5. Ablation studies on tuning paradigm, differentiated contrast weights, different sample generation strategies, and entropy regular-
ization. The “Reward” represents the average reward scores obtained during alignment tuning, spanning from -1 to 1. A negative score
indicates a penalty, while a positive score represents a reward. The “Diversity” reflects the average number of unique responses produced
during the training process. Additionally, we evaluate performance on the CleanBench-Real validation set using four non-reference met-
rics: MUSIQ, MANIQA, CLIP-IQA+, and LIQE. The reported values represent the average performance across all tested scenes.

Strategy Reward Diversity MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑
Vanilla RRHF 0.40 3.12 63.89 0.5090 0.5388 3.589

MRRHF (Ours) 0.67 6.55 71.43 0.7099 0.7296 4.411

w/o. differentiated contrast weights 0.53 2.62 63.22 0.5871 0.6130 3.597
w. differentiated contrast weights (Ours) 0.67 6.55 71.43 0.7099 0.7296 4.411

offline sample generation 0.43 3.63 64.12 0.5323 0.6012 3.620
online sample generation -0.87 1.27 - - - -

hybrid sample generation (Ours) 0.67 6.55 71.43 0.7099 0.7296 4.411

w/o. entropy regularization 0.50 4.56 65.06 0.6207 0.6915 3.867
w. entropy regularization (Ours) 0.67 6.55 71.43 0.7099 0.7296 4.411

to using Lrank. We attribute this to the differentiated con-
trast weights enabling the VLM to recognize that some neg-
ative examples are neutral (with reward scores close to pos-
itive examples) and thus should not be excessively penal-
ized, which helps prevent confusion during VLM training.
Specifically, assuming the system uses diverse beam search
to obtain multiple responses r1, . . . , ri, rk, rn the original
RRHF algorithm treats the best response rk as positive and
the remaining responses ri < rk as negative examples of
rk and applies the same penalty to them. However, this
approach may not be reasonable, especially when the pref-
erence scores of different ri are similar. For instance, when
the preference of rk+1 is only slightly worse than rk, while
rn is significantly worse than rk, the model should differ-
entiate and apply different penalty strengths, slightly penal-
izing rk+1 and heavily penalizing rn compared to rk. To
address this, we propose using the score S (ri) from a re-
ward model S (·) to indicate the numerical preference of ri,
i.e., the differentiated contrast weights (sj − si).

10.4. Impact of reasoning for decision-making
As the pioneering work [76] points out, Chain-of-Thought
(CoT) is “a series of intermediate reasoning steps” that has
proven effective in complex reasoning tasks [36, 76, 96].
The main idea of CoT is to prompt large language models
(LLMs) to output not only the final answer but also the rea-
soning process leading to it, resembling human cognitive
processes. Inspired by this approach, we enable JarvisIR to
provide detailed degradation and reasoning insights about
the degraded image before making decisions, specifically
before producing the task sequence with model selection.
To assess the impact of reasoning on final decision-making,
we perform ablation experiments on the CleanBench-Real
validation set by comparing two variants: (1) directly re-
questing JarvisIR to output the task sequences, and (2) pro-
viding detailed degradation and reasoning insights before

Table 6. Ablation studies on the impact of reasoning for decision-
making. We evaluate performance on the CleanBench-Real vali-
dation set using four non-reference metrics: MUSIQ, MANIQA,
CLIP-IQA+, and LIQE. The reported values represent the average
performance across all tested scenes.

Configurations MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑
w/o. reasoning 71.17 0.6942 0.7156 4.394
(Ours) w reasoning 71.43 0.7099 0.7296 4.411

outputting the task sequences. As shown in Table 6, provid-
ing detailed degradation and reasoning insights significantly
enhances JarvisIR’s decision-making, leading to notable
improvements in the four non-reference metrics. By ex-
plicitly describing degradations and reasoning insights, the
model can use in-context learning to align selected tasks and
restoration experts with the specific degradations present.
This strategy not only enhances interpretability but also in-
troduces constraints that make the model’s decisions more
reliable in real-world scenarios.

10.5. Impact of reward model

To analyze how various reward model configurations af-
fect model optimization, we conducted an ablation ex-
periment exploring three distinct settings: (I) multiple
VLM-based IQA models as a unifined reward model (e.g.,
Q-instruct [80] and Q-align [79]). (II) using a sin-
gle VLM-based IQA model (e.g., Q-Instruct [80] or Q-
align [79]) or a traditional IQA model (e.g., MUSIQ [35]
or MANIQA [86]). (III) multiple traditional IQA models as
a unifined model (e.g., MUSIQ [35] and MANIQA [86]).
The results of JarvisIR-MRRHF trained with different re-
ward models are summarized in Table 7. Based on the re-
sults, we make the following observations: (1) Using mul-
tiple VLM-based IQA models as the reward model signif-
icantly improves perception metrics, although it increases
resource consumption during training. (2) Training with a
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Table 7. Ablation studies on the impact of different reward model configurations. We evaluate performance on the CleanBench-Real
validation set using four non-reference metrics: MUSIQ, MANIQA, CLIP-IQA+, and LIQE. The reported values represent the average
performance across all tested scenes.

Configurations MUSIQ ↑ MANIQA ↑ CLIP-IQA+ ↑ LIQE ↑
(I) Q-align [79] + Q-Instruct [80] 71.41 0.7094 0.7308 4.419

(II) Q-align 71.35 0.7086 0.7288 4.409
(II) Q-Instruct [80] 71.37 0.7093 0.7257 4.402
(II) MUSIQ [35] 71.64 0.6932 0.6977 3.955
(II) MANIQA [86] 68.49 0.7126 0.6805 3.981

(III) MUSIQ [35] + MANIQA [86] 71.52 0.7118 0.7068 4.127

(Ours) Q-Instruct [80]+ MUSIQ [35] + MANIQA [86] 71.43 0.7099 0.7296 4.411

single IQA model improves the corresponding metric sig-
nificantly, but other metrics may experience some degrada-
tion. (3) Combining multiple traditional IQA models as the
reward model enhances performance on certain metrics, but
the improvements are asymmetrical—some traditional met-
rics exhibit very high performance while perception met-
rics are relatively low. Consequently, we opt to create
the unified reward model by combining both VLM-based
and non-VLM-based IQA models, such as Q-instruct [80],
MUSIQ [35], and MANIQA [86]. This combination allows
for a comprehensive evaluation of system responses while
preserving training efficiency.

11. More visual results.

11.1. Perception restoration

Additional visual comparisons highlight the effectiveness
of the proposed JarvisIR framework in real-world adverse
weather conditions. Figure 9 illustrates the comprehensive
workflow of JarvisIR, which begins by receiving user com-
mands and degraded images. JarvisIR evaluates the im-
age quality, identifies degradation factors, and formulates
task sequences. It then selects appropriate models for tasks
such as denoising, dehazing, and super-resolution. The out-
puts include evaluated inference insights, detailed restora-
tion plans, and enhanced images, effectively bridging user
instructions with image restoration plans.

Figure 10 illustrates the decision-making processes of
both JarvisIR-MRRHF and JarvisIR-SFT. Experimental
results indicate that the decision-making capability of
JarvisIR-MRRHF surpasses that of JarvisIR-SFT. Specif-
ically, JarvisIR-MRRHF makes correct decisions in cases
where JarvisIR-SFT previously failed. For example,
in coupled degraded real rain scenarios (the first row),
JarvisIR-SFT yields a mediocre decision—“Enhancement
(Img2img-turbo) → Dehaze (RIDCP) → DeRaindrop
(IDT)”—which does not remove raindrops and blur the
background. However, JarvisIR-MRRHF accurately iden-
tifies the appropriate restoration tasks and selects the opti-

mal models to solve them: “Denoise (SCUNet) → DeRain-
drop (IDT) → Deblur (StableSR-turbo)”. This improve-
ment confirms that MRRHF fine-tuning significantly en-
hances JarvisIR’s decision-making ability under real-world
conditions, reduces hallucination errors, and improves gen-
eralization performance.

Figures 12, 13, 14, and 15 illustrate visual comparisons
of our method and the baseline methods across four dif-
ferent scenes on the CleanBench-Real test set. Our re-
sults demonstrate that JarvisIR outperforms the compara-
tive methods in terms of color enhancement, detail preserva-
tion, and the elimination of degradations, achieving a supe-
rior balance among these aspects. Conversely, the baseline
methods perform poorly in real-world environments. They
struggle to handle coupled degradations that occur simulta-
neously in natural settings, such as low light combined with
fog or a mixture of rain and fog. These limitations may
arise from their heavy dependence on specific degradation
priors and significant domain gaps due to mismatches be-
tween synthetic training data distributions and real-world
data. Consequently, they often produce subpar recovery re-
sults featuring artifacts, overexposure, underexposure, and
amplified noise.

12. Limitations, broader impacts and future
work

The primary limitation of our research is that JarvisIR is un-
able to address all real-world restoration scenarios. While
it demonstrates effectiveness in handling most degradation
scenarios relevant to autonomous driving, it does not ex-
tend to tasks such as underwater image restoration, old
photo enhancement, or blind face restoration. By incor-
porating appropriate data and tools, rapid adaptation could
be achieved through the proposed training paradigm. Fur-
thermore, the tools currently employed are limited in scope
and capability. In our future work, we will incorporate
more advanced and robust restoration tools that might fur-
ther enhance JarvisIR’s ability to address real-world cou-
pled degradation challenges.
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Figure 9. More examples of JarvisIR’s perception restoration are presented. Initially, JarvisIR assesses the degradation of the input images
and parses user instructions to formulate a task plan, selecting appropriate expert models for each subtask. The selected experts perform
their designated tasks and return the results to JarvisIR, which integrates the outcomes and provides the final answer to the user.

Figure 10. Comparison of the decision-making processes of JarvisIR-MRRHF and JarvisIR-SFT. The results indicate that the MRRHF
version accurately predicts the correct task sequence and selects appropriate restoration models. Conversely, the SFT version often fails to
make suitable decisions in real-world scenarios due to the domain gap between training and real data distributions.

Another future work could focus on retaining the origi-
nal image resolution during training. Most current vision-
language models (VLMs) resize input images to a fixed
resolution, such as 336 × 336, which may degrade perfor-
mance, as resolution variation may affect the model’s per-
ception of degradation. To mitigate this, future research
could explore techniques to maintain original image resolu-
tions. One approach involves adapting the position embed-
dings in CLIP [58] using bicubic interpolation to accommo-
date varying image dimensions.

This work focuses on building an autonomous, robust,

intelligent restoration system tailored for real-world chal-
lenges. To enhance system robustness, reduce hallucina-
tions, and improve generalizability, we introduce a novel
two-stage framework that integrates supervised fine-tuning
with human feedback alignment. By utilizing human feed-
back and large-scale real unlabeled data, our method allows
the VLM to be fine-tuned in an unsupervised manner. We
believe that this paradigm can inspire future work to build
more powerful and versatile intelligent systems.
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Daytime Fog Rainy Night Snow

Figure 11. Examples of synthetic adverse weather scenarios in autonomous driving from the CleanBench dataset.
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Figure 12. Visual comparisons among various methods on CleanBench-Real’s night scene validation set.
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Figure 13. Visual comparisons among various methods on CleanBench-Real’s rain scene validation set.
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Figure 14. Visual comparisons among various methods on CleanBench-Real’s fog scene validation set.
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Figure 15. Visual comparisons among various methods on CleanBench-Real’s snow scene validation set.
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Table 8. Instruction generated by GPT-4V using the self-instruct strategy [73]

# Instruction
1 Please evaluate the image’s quality comprehensively and provide your insights. Additionally, outline

a step-by-step restoration strategy, specifying the sequence of tasks and model choices for each step.
The available tasks are super-resolution, denoising, dehazing,..., low-light enhancement. The avail-
able restoration models are StableSR-turbo: (model description), SCUnet: (model description),...,
RIDCP: (model description).

2 Analyze the quality of the image comprehensively and provide your insights. Furthermore, propose
a restoration strategy by detailing each task and model choice sequentially. The available tasks
include super-resolution, denoising, dehazing,..., low-light enhancement. The restoration models are
StableSR-turbo: (model description), SCUnet: (model description),..., RIDCP: (model description).

3 Assess the overall quality of the image and provide a detailed evaluation. Then, design a step-by-
step restoration process, specifying tasks and model choices. Tasks available are super-resolution,
denoising, dehazing,..., low-light enhancement, and models include StableSR-turbo: (model descrip-
tion), SCUnet: (model description),..., RIDCP: (model description).

4 Perform a comprehensive evaluation of the image quality and explain your observations. Addition-
ally, develop a step-by-step restoration plan, identifying tasks and model choices. Available tasks
are super-resolution, denoising, dehazing,..., low-light enhancement, and models include StableSR-
turbo: (model description), SCUnet: (model description),..., RIDCP: (model description).

5 Conduct a thorough analysis of the image’s quality and provide your insights. Subsequently, create
a restoration strategy step by step, specifying the tasks and model choices. The tasks available are
super-resolution, denoising, dehazing,..., low-light enhancement, and models are StableSR-turbo:
(model description), SCUnet: (model description),..., RIDCP: (model description).

6 Evaluate the quality of the image comprehensively and outline your findings. Moreover, formulate
a sequential restoration plan, detailing tasks and model selections. Available tasks include super-
resolution, denoising, dehazing,..., low-light enhancement, and models are StableSR-turbo: (model
description), SCUnet: (model description),..., RIDCP: (model description).

7 Provide a detailed assessment of the image’s quality and share your observations. Then, create
a restoration strategy in a step-by-step manner, specifying tasks and models. Available tasks are
super-resolution, denoising, dehazing,..., low-light enhancement, and models include StableSR-
turbo: (model description), SCUnet: (model description),..., RIDCP: (model description).

8 Examine the image comprehensively and describe its quality in detail. Additionally, outline a step-
wise restoration process, specifying the tasks and models for each stage. Tasks available are super-
resolution, denoising, dehazing,..., low-light enhancement, and models are StableSR-turbo: (model
description), SCUnet: (model description),..., RIDCP: (model description).

9 Review the image quality comprehensively and present your findings. Furthermore, propose a
restoration plan step by step, detailing the tasks and models used. Available tasks are super-
resolution, denoising, dehazing,..., low-light enhancement, and restoration models are StableSR-
turbo: (model description), SCUnet: (model description),..., RIDCP: (model description).

10 Perform a detailed evaluation of the image and provide your insights. Then, construct a step-by-step
restoration strategy, specifying the sequence of tasks and the corresponding models. The avail-
able tasks include super-resolution, denoising, dehazing,..., low-light enhancement, and models are
StableSR-turbo: (model description), SCUnet: (model description),..., RIDCP: (model description).
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Table 9. Responses generated by GPT-4V using the self-instruct strategy [73]

# Response
1 The image depicts an outdoor scene viewed through a wet windshield, with water droplets signif-

icantly obscuring the view. The evaluated image exhibits severe distortion caused by the water
droplets, resulting in a loss of sharpness and clarity. Details of the background, such as the car ahead
and surrounding structures, are blurred and difficult to discern. The image also suffers from uneven
focus and lacks proper visibility.

2 This image portrays an outdoor scene as seen through a wet windshield, where water droplets heav-
ily obstruct the view. The distortion caused by these droplets leads to a noticeable reduction in
sharpness and clarity. Background elements, like the car in front and nearby structures, appear heav-
ily blurred and challenging to distinguish. The image further suffers from uneven focus, reducing
overall visibility.

3 An outdoor setting is captured in this image, viewed through a wet windshield. The water droplets
significantly obscure the scene, causing severe distortion. Sharpness and clarity are greatly reduced,
and background features, such as the car ahead and surrounding buildings, are blurred and hard to
recognize. Uneven focus further detracts from the image’s overall visibility.

4 This image showcases an outdoor scene as observed through a wet windshield, with water droplets
causing significant obstruction. The distortion leads to substantial clarity and sharpness loss. Details
in the background, including the car ahead and nearby structures, are blurred and hard to identify.
Additionally, the image has uneven focus, which impairs its overall visibility.

5 The image illustrates an outdoor view observed through a wet windshield, where water droplets
obscure much of the scene. The distortion caused by the droplets results in a notable reduction in
sharpness and clarity. Background details, such as the car ahead and surrounding structures, appear
blurry and indistinct. Uneven focus further degrades the visibility of the image.

6 In this image, an outdoor setting is depicted as seen through a wet windshield, with water droplets
heavily obscuring the view. The distortion from the droplets results in a considerable loss of sharp-
ness and clarity. Background elements, like the car ahead and nearby buildings, are blurred and hard
to discern. The uneven focus of the image adds to its overall lack of visibility.

7 This image shows an outdoor scene viewed through a wet windshield, with water droplets creating
significant visual obstruction. The distortion caused by the droplets reduces the sharpness and clarity
of the image. Background features, including the car ahead and the surrounding structures, are
blurred and difficult to distinguish. The image also suffers from uneven focus, limiting its visibility.

8 An outdoor view is displayed in this image, captured through a wet windshield with water droplets
blocking much of the scene. The distortion caused by the droplets results in reduced clarity and
sharpness. Background details, such as the car in front and nearby structures, are blurred and indis-
tinct. Uneven focus further compromises the visibility of the image.

9 The image depicts an outdoor scene seen through a wet windshield, where water droplets obscure
much of the view. This distortion leads to a significant loss of sharpness and clarity. Background
elements like the car ahead and nearby structures are blurred and challenging to distinguish. Uneven
focus further contributes to the poor visibility of the image.

10 This image represents an outdoor scene viewed through a wet windshield, with water droplets ob-
scuring the visual field. The distortion caused by the droplets significantly affects sharpness and
clarity, making background features like the car ahead and surrounding structures appear blurred
and indistinct. The uneven focus further reduces the overall visibility of the image.
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